Privacy Preserving Based on PCA Transformation Using Data Perturbation Technique
نویسنده
چکیده
Maintain confidentiality, privacy and security research in data mining (PPDM) is one of the biggest trends. Recent advances in data collection, data dissemination and related technologies have inaugurated a new era of research where existing data mining algorithms should be reconsidered from a different point of view, this of privacy preservation. We propose a simple PCA based transformation approach for various datasets to preserve privacy and maintain accuracy based on clustering. A privacy soil, the proposal to convert the data into nature, conservation saves. The accuracy of clustering before and after privacy preserving transformation was estimated. KeywordsPrivacy; PCA; K-means clustering
منابع مشابه
A Model Based Framework for Privacy Preserving Clustering Using SOM
Privacy has become an important issue in the progress of data mining techniques. Many laws are being enacted in various countries to protect the privacy of data. This privacy concern has been addressed by developing data mining techniques under a framework called privacy preserving data mining. Presently there are two main approaches popularly used -data perturbation and secure multiparty compu...
متن کاملOn Random Additive Perturbation for Privacy Preserving Data Mining
Title of Thesis: On Random Additive Perturbation for Privacy Preserving Data Mining Author: Souptik Datta, Master of Science, 2004 Thesis directed by: Dr. Hillol Kargupta, Associate Professor Department of Computer Science and Electrical Engineering Privacy is becoming an increasingly important issue in many data mining applications. This has triggered the development of many privacy-preserving...
متن کاملPrincipal Component Analysis Based Transformation for Privacy Preserving in Data Stream Mining
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. The data owners or publishers may not be willing to exactly reveal the true values of their data due to various reasons, most notably privacy consider...
متن کاملPreserving Privacy Using Data Perturbation in Data Stream
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. The data owners or publishers may not be willing to exactly reveal the true values of their data due to various reasons, most notably privacy consider...
متن کاملModified Privacy Preserving Data Mining System for Improved Performance
Privacy of information and security issues now-a-days has become the requisite because of big data. A novel framework for extracting and deriving information when the data is distributed amongst the multiple parties is presented by Privacy Preserving Data Mining (PPDM). The concern of PPDM system is to protect the disclosure of information and its misuse. Major issue with PPDM that exists is to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013